Two-Dimensional Finsler Metrics with Constant Curvature
نویسنده
چکیده
We construct infinitely many two-dimensional Finsler metrics on S 2 and D 2 with non-zero constant flag curvature. They are all not locally projectively flat.
منابع مشابه
On Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملOn 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کاملOn Special Generalized Douglas-Weyl Metrics
In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.
متن کاملFinsler Metrics with K = 0 and S = 0
In Finsler geometry, there are infinitely many models of constant curvature. The Funk metrics, the Hilbert-Klein metrics and the Bryant metrics are projectively flat with non-zero constant curvature. A recent example constructed by the author is projectively flat with zero curvature. In this paper, we introduce a technique to construct non-projectively flat Finsler metrics with zero curvature i...
متن کاملOn a new geometrical derivation of two-dimensional Finsler manifolds with constant main scalar
In this paper we investigate the problem what kind of (two-dimensional) Finsler manifolds have a conformal change leaving the mixed curvature of the Berwald connection invariant? We establish a differential equation for such Finslerian energy functions and present the solutions under some simplification. As we shall see they are essentially the same as the singular Finsler metrics with constant...
متن کامل